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Abstract

Soluble forms of oligomeric beta-amyloid (Aβ) are thought to play a central role in Alzhei-

mer’s disease (AD). Transgenic manipulation of methylation of the serine/threonine protein

phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impair-

ments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-

hydroxytryptamide (EHT), a naturally occurring component from coffee beans that modu-

lates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD

and Parkinson’s disease. Here, we tested the hypothesis that EHT protects animals from

the pathological effects of exposure to elevated levels of soluble oligomeric Aβ. We treated

mice with EHT-containing food at two different doses and assessed the sensitivity of these

animals to Aβ-induced behavioral and electrophysiological impairments. We found that EHT

administration protected animals from Aβ-induced cognitive impairments in both a radial-

arm water maze and contextual fear conditioning task. We also found that both chronic and

acute EHT administration prevented Aβ-induced impairments in long-term potentiation.

These data add to the accumulating evidence suggesting that interventions with pharmaco-

logical agents, such as EHT, that target PP2A activity may be therapeutically beneficial for

AD and other neurological conditions.

Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative condition for which no effective

disease modifying treatment exists. AD is currently the 6th leading cause of death in the United
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States [1], and the prospect that its incidence will increase as the population ages makes it a

source of increasing public health concern. We found previously that eicosanoyl-5-hydroxy-

tryptamide (EHT), a component of coffee, showed therapeutic benefits in rodent models of

AD and Parkinson’s disease [2–4]. Here we examine further the effect of EHT on AD patho-

genesis and show that EHT administration reduces the sensitivity of mice to behavioral and

electrophysiological impairments caused by the AD-linked protein, beta-amyloid (Aβ).

EHT was identified in a screen for natural compounds that enhance the activity of the ser-

ine/threonine protein phosphatase, PP2A, toward phospho-protein substrates associated with

AD and PD [3]. Multiple lines of evidence independently implicate PP2A in AD, among these

are the observations that 1) PP2A expression and activity are reduced in brains from AD

patients [5–8], 2) reducing PP2A activity in animal models results in AD-like pathology and

cognitive deficits [9–15], 3) PP2A is the principal phosphatase for phosphorylated forms of tau

linked to AD [16], and 4) pharmacological activation of PP2A reduces cognitive impairment

and pathology in mouse tauopathy models [17–19].

PP2A is a heterotrimeric protein composed of a catalytic subunit (C), a structural subunit

(A), and a regulatory subunit (B). Multiple isoforms exist for each of these subunits and they

are assembled in a highly-regulated process [20]. The identity of the B subunit is thought to be

the principal determinant of substrate specificity, with B55α subunit-containing enzymes

exhibiting the highest tau phosphatase activity [21]. The proportion of PP2A heterotrimers

that contain B55α subunits is regulated by methylation and demethylation of the catalytic sub-

unit catalyzed by a dedicated methyltransferase and methylesterase, in a process that is con-

served from yeast to mammals [20]. Dysregulated PP2A activity resulting from impaired

PP2A methylation is thought to be one of the molecular mechanisms by which hyperhomocys-

teinemia leads to increased AD risk [22].

Aβ is a 40–42 amino acid peptide generated by proteolytic cleavage of the amyloid precur-

sor protein (APP). Aβ is the primary constituent of the amyloid plaques that characterize AD,

and soluble forms of Aβ produce AD-related impairments in cell and animal models [23]. To

examine the effect of dysregulated PP2A methylation on AD pathogenesis, we previously gen-

erated two lines of transgenic mice that overexpress either the PP2A methyltransferase,

LCMT- 1, or the PP2A methylesterase, PME-1. In published work, we showed that PME-1

over expression sensitized animals to cognitive and electrophysiological impairments caused

by Aβ exposure, while LCMT-1 overexpression protected animals from these impairments

[24]. In the current study, we tested whether EHT might also protect mice from the pathologi-

cal actions of Aβ. We found that EHT treatment decreases sensitivity to Aβ-induced cognitive

and electrophysiological impairments in a manner similar to LCMT-1 over expression. These

data add to the accumulating evidence suggesting that PP2A, or enzymes that regulate it, may

constitute viable therapeutic targets for AD prevention or treatment.

Results

Effect of EHT on Aβ-induced cognitive impairments

To test the effect of EHT on Aβ-induced cognitive impairments, we shifted 3-month-old wild-

type mice to diets containing either 0, 0.01 or 0.1% EHT [3] 3 weeks prior to surgery to implant

bilateral cannulae directed at the dorsal hippocampus. These doses of orally administered EHT

were shown previously to protect against impairments resulting from the expression of a

virally-transduced PP2A inhibitor in rats [2], as well as Parkinson’s disease-related impair-

ments in α-synuclein expressing transgenic mice, and mice injected with MPTP [3, 4]. In the

most recent of these studies, EHT treatment showed efficacy against MPTP-induced impair-

ments after only 4 weeks of administration, so this was selected as the minimum time for in
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vivo EHT administration in the current experiments. After 7–10 days of recovery from surgery,

animals were then tested on a battery of behavioral tasks conducted over the course of 2 weeks

in the following order: open field behavior, 2-day radial arm water maze, contextual fear con-

ditioning, visible platform water maze and sensory threshold assessment. Prior to testing in

each task, animals were infused with 1 μl per side of 200 nM synthetic oligomeric Aβ peptide

or vehicle as described in [24]. Oligomeric Aβ was prepared from synthetic peptide corre-

sponding to the human Aβ 1–42 sequence and oligomerized according to a previously

described protocol [25]. In earlier studies, administration of synthetic oligomeric Aβ prepared

in this manner showed a hormetic dose-response relationship with respect to both its

electrophysiological and behavioral effects [26, 27], and the 200 nM in vivo dose selected for

these studies corresponds to the threshold at which maximal cognitive impairment was

observed [27].

We found that animals treated with diets containing either 0.01 or 0.1% EHT were resistant

to Aβ-induced impairments in a contextual fear conditioning task (Fig 1A). This task requires

animals to make an association between an aversive foot shock, and a novel context, and has

been found to be both hippocampus-dependent and sensitive to elevated Aβ levels [24, 28].

Hippocampus-dependent memory impairments are also a prominent feature of AD. All ani-

mals were infused with vehicle or Aβ 20 min prior to their first exposure to the conditioning

chamber, and no significant differences in baseline freezing were observed among these groups

prior to foot shock administration. Upon reintroduction to the conditioning chamber 24 hrs

later, all vehicle-treated groups showed similarly elevated freezing responses indicative of

strong memories for the shock-context association, while animals on control diet infused with

Aβ showed reduced freezing responses compared to controls, suggesting that Aβ infusion

interfered with these memories. Notably, Aβ-infused animals on EHT-containing diets exhib-

ited freezing responses that were comparable to vehicle infused controls, suggesting that EHT

administration protected animals from the cognitive impairment caused by Aβ
administration.

To test for possible differences in baseline activity levels among these groups that might

confound our interpretation of their behavior in the contextual fear condition task, we exam-

ined their behavior in an open field environment. To test for possible differences in shock per-

ception among these groups that might affect their performance in the contextual fear

condition task, we also examined their behavioral responses to a range of shock intensities. We

found that neither dietary EHT administration nor Aβ infusion 20 min prior to testing affected

their ambulatory activity, as assessed by total distance travelled (Fig 1B) and immobility time

(Fig 1C). We also found comparable thresholds for the first visible, first gross motor, and first

vocal response to foot shocks of increasing intensity among these groups (Fig 1D). Together

these data suggest that the differences observed among these groups during testing in the con-

textual fear conditioning task are not due to differences in baseline activity levels or shock

perception.

As an additional test of EHT’s ability to protect against Aβ-induced cognitive impairments,

we tested these animals on 2-day radial arm water maze task. This task is a test of short-term

spatial memory and requires animals to learn and remember the identity of visual cues to navi-

gate to a specific location. It is also hippocampus-dependent and sensitive to elevated Aβ levels

[29]. We found that all vehicle treated groups acquired this task at a comparable rate across tri-

als, and to a comparable extent (Fig 2A). As described previously [24], administration of 200

nM Aβ 20 min before and again midway through training on each day of the task resulted in

impaired performance in animals fed the control diet. However, Aβ administration to animals

on EHT-containing diets did not cause similar impairments, and the performance of the Aβ-

infused, EHT-treated groups was similar to that of the vehicle-infused control group on this
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task. Like the data from the contextual fear conditioning task, these results suggest that EHT

administration protects against cognitive impairments caused by elevated Aβ levels.

To test for potential differences in visual perception, motivation or swimming ability

among these groups that might affect their performance in the 2-day radial arm water maze

task, we assessed their performance in a visible platform version of the Morris water maze. We

found no significant differences among these groups in either escape latency (Fig 2B), or swim-

ming speed (Fig 2C) during 4 3-trial training blocks carried out across 2 days, suggesting that

differences in these variables do not account for the differences observed among groups in the

2-day radial arm water maze task.

Effect of EHT on Aβ-induced impairments in synaptic plasticity

Activity-dependent changes in the efficacy of synaptic transmission within the hippocampus

are thought to be required for particular forms of learning and memory, and interference with

Fig 1. EHT prevents Aβ-induced impairment of contextual fear conditioning. (A) Average percent of time spent

freezing (± SEM) during initial exposure to the training context (baseline) and 24 hours after foot shock for the

indicated treatment groups. 2-way RM-ANOVA with group and training day as factors: F(5,77) = 2.749, P = 0.0244 for

group; F(1,77) = 300.5, P<0.0001 for training day, and F(5,77) = 2.301, P = 0.0528 for interaction, Bonferroni post-hoc

comparisons of the control + vehicle group to all other treatment groups in the experiment show that only the control

+ Aβ group is significantly different than control + vehicle group at 24 hrs, P = 0.0002. No significant differences were

observed between groups in their baseline responses. (N = 13 control + vehicle, 13 control + Aβ, 14 0.01% EHT

+ vehicle, 14 0.01% + Aβ, 14 0.1% + vehicle, 15 0.1% EHT + Aβ.) (B) Average distance traveled (± SEM) for the

indicated treatment groups during 10 min exposures to an open field environment on subsequent days. 2-way

RM-ANOVA with group and day as factors: F(5,68) = 0.3755, P = 0.8647 for group; F(1,68) = 45.31, P<0.0001 for

training day, and F(5,68) = 0.0702, P = 0.9965 for interaction. (C) Average time immobile (± SEM) for the indicated

treatment groups during 10 min exposures to an open field environment on subsequent days revealed no significant

differences between groups 2-way RM-ANOVA with group and day as factors: F(5,68) = 0.8474, P = 0.5187 for

group; F(1,68) = 24.7, P<0.0001 for training day, and F(5,68) = 0.5231, P = 0.7585 for interaction. (N = 11–14 per

group). (D) Plot of average threshold for responses to foot shocks of increasing intensity for the indicated treatment

groups 2-way RM-ANOVA with group and threshold as factors: F(5,67) = 0.7218, P = 0.6094 for group; F(2,134) =

158.2, P<0.0001 for threshold, and F(10,134) = 1.548, P = 0.1291 for interaction. (N = 11–14 per group).

https://doi.org/10.1371/journal.pone.0189413.g001
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these changes, caused by elevated levels of Aβ is thought to contribute to AD-associated cogni-

tive impairments [30]. To determine whether EHT administration also affected Aβ-induced

impairments in synaptic plasticity, we measured long-term potentiation (LTP) in the presence

or absence of Aβ in hippocampal slice preparations treated acutely with EHT (Fig 3A–3F).

EHT was bath applied at 0, 0.0001, 0.001, 0.01, 0.1, or 1 μM together with 100 nM Aβ or vehicle

for 20 min prior to administration of a theta-burst stimulus train (TBS). As in the behavioral

tests, the dose of Aβ selected for in vitro application in this experiment was at or near the

Fig 2. EHT prevents Aβ-induced impairment of spatial learning and memory in a 2-day radial arm

water maze task. (A) Average number of errors committed (± SEM) during each 3-trial training block of a

2-day radial arm water maze task for the indicated treatment groups. 2-way RM-ANOVA for day 2 (blocks

6–10) with block and group as factors: F (5,69) = 4.424, P = 0.0015 for group; F (4,276) = 25.95, P<0.0001 for

block,; F (20,276) = 0.5657, P = 0.9338 for interaction. Bonferroni post-hoc comparisons of the control

+ vehicle group to all other treatment groups show that only the control + Aβ group is significantly different

than control + vehicle group. (N = 12 control + vehicle, 13 control + Aβ, 12 0.01% EHT + vehicle, 12 0.01%

+ Aβ, 13 0.1% + vehicle, 13 0.1% EHT + Aβ.) (B) Plot of the average escape latency (± SEM) for the indicated

treatment groups during training on a visible platform Morris water maze task reveals no significant

differences between groups (2-way RM-ANOVA with trial block and treatment group as factors: F(5,69) =

0.9766, P = 0.4384 for group, F(3,207) = 72.48, P<0.0001 for block, and F(15,207) = 0.8627, P = 0.6068 for

interaction). (N = 12 control + vehicle, 13 control + Aβ, 12 0.01% EHT + vehicle, 12 0.01% + Aβ, 13 0.1%

+ vehicle, 13 0.1% EHT + Aβ). (C) Plot of the average swim speed (± SEM) for the indicated treatment groups

during training on the visible platform Morris water maze task described in B reveals no significant differences

between groups (2-way RM-ANOVA with trial block and treatment group as factors: F(5,69) = 1.232,

P = 0.3035 for group, F(3,207) = 28.3, P<0.0001 for block, and F(15,207) = 0.9227, P = 0.5398 for

interaction).

https://doi.org/10.1371/journal.pone.0189413.g002
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previously reported threshold for maximal LTP impairment in these preparations [26, 27]. In

the absence of EHT, TBS resulted in potentiated responses that were significantly reduced by

pretreatment with Aβ (Fig 3A). However, this impairment was prevented by EHT in a dose-

dependent manner (Fig 3), with slices treated with 0.0001 μM EHT still showing a significant

impairment (Fig 3B), slices treated with 0.001 μM EHT showing an intermediate impairment

(Fig 3C), and slices treated with 0.01μM EHT or higher, showing no significant Aβ-induced

LTP impairment (Fig 3D–3F). Analysis of the average potentiated responses for the last 10

min of these recordings yield an EC50 for EHT-mediated protection against Aβ-induced LTP

impairments of approximately 3.5 nM (Fig 3G). In addition, the magnitude of LTP obtained

in EHT treated slices in the absence of Aβ was similar to LTP obtained in control slices treated

with neither EHT nor Aβ, suggesting that LTP was not affected by EHT treatment at the indi-

cated concentrations (Fig 3A–3F). Interestingly, the efficacy of EHT in these assays was signifi-

cantly greater than the micromolar efficacy for EHT-mediated inhibition of PP2A

demethylation reported previously [3], and, while significant differences may exist between

the in vitro and in vivo dose-response relationships for EHT’s protective effects, they are also

consistent with the higher efficacy of 0.01% EHT-containing diets in protecting against Aβ-

induced vs. α-synuclein-related impairments in that study.

To determine whether chronically administered EHT might also protect against Aβ-

induced LTP impairments in vivo, we prepared acute hippocampal slices from the same vehi-

cle-infused EHT treated animals used in the behavioral assays. We then performed extracellu-

lar field potential recordings of LTP at Schaffer collateral synapses in these preparations in the

presence or absence of 100 nM Aβ. As expected, TBS produced robust potentiation of

responses in vehicle-treated slices prepared from animals that received control diet that were

significantly reduced by Aβ treatment (Fig 4A). In contrast, Aβ treatment did not significantly

affect potentiated responses in slices from animals that received diets containing 0.01% EHT

(Fig 4B)–consistent with the hypothesis that EHT treatment may protect against Aβ-induced

cognitive impairments by preventing underlying Aβ-induced impairments in synaptic plastic-

ity. To test for possible effects of EHT treatment on baseline synaptic transmission, we com-

pared the input/output relationships at Schaffer collateral synapses in slices prepared from

animals that received 0 or 0.01% EHT containing diets, and found no significant differences

among these groups (Fig 4C).

Fig 3. Acute EHT treatment prevents Aβ-induced impairment of long-term potentiation. (A-F) Time course of averaged

Schaffer collateral fEPSP responses (± SEM) in hippocampal slices prepared from slices treated with vehicle or 0, 0.0001, 0.001,

0.01, 0.1, or 1 μM EHT +/- vehicle or 100 nM Aβ (horizontal bar) 20 min prior to delivery of theta-burst stimulation (arrow). (A) Aβ
treatment significantly reduces potentiated responses following TBS in slices treated with 0 μM EHT (2-way RM-ANOVA for

treatment with time and treatment as factors: F(1,19) = 8.827, P = 0.0078). (B) Aβ treatment significantly reduces potentiated

responses following TBS in slices treated with 0.0001 μM EHT (2-way RM-ANOVA for treatment with time and treatment as

factors: F(1,11) = 6.84, P = 0.0240). (B) Aβ treatment yields a non-significant trend for reduced potentiated responses following

TBS in slices treated with 0.001 μM EHT (2-way RM-ANOVA for treatment with time and treatment as factors: F(1,16) = 2.123,

P = 0.1645). (D-F) Aβ treatment does not significantly reduce potentiated responses following TBS in slices treated with 0.01, 0.1,

or 1 μM EHT (2-way RM-ANOVA for treatment with time and treatment as factors: For 0.01 μM EHT: F(1,18) = 0.1646, P = 0.6898;

For 0.1 μM EHT: F(1.21) = 0.0034, P = 0.9543; For 1 μM EHT: F(1,15) = 0.0014, P = 0.9702). Comparison of potentiated

responses in the absence of Aβ revealed no effect of EHT treatment alone on TBS-induced LTP (2-way RM-ANOVA comparisons

to 0 EHT + vehicle for treatment with time and treatment as factors: For 0.0001 μM EHT: F(1,15) = 0.0132, P = 0.9099; For

0.001 μM EHT: F(1,18) = 0.0539, P = 0.8191; For 0.01 μM EHT: F(1,18) = 0.16, P = 0.6939; For 0.1 μM EHT: F(1,21) = 0.2294,

P = 0.6369; For 1 μM EHT: F(1,18) = 0.7098, P = 0.4106). (G) Plot of the average potentiated responses over the last 10 min of the

recordings shown in B-F for slices treated with Aβ in the presence of the indicated concentrations of EHT. The upper and lower

dashed lines indicate the mean potentiated response obtained in the absence of EHT for vehicle or Aβ treated slices respectively.

(N = 11 0 μM EHT + vehicle, 10 0 μM EHT + Aβ, 6 0.0001 μM EHT + vehicle, 7 0.0001 μM EHT + Aβ, 9 0.0001 μM EHT + vehicle, 9

0.0001 μM EHT + Aβ, 9 0.01 μM EHT + vehicle, 11 0.01 μM EHT + Aβ, 12 0.1 μM EHT + vehicle, 11 0.1 μM EHT + Aβ, 9 1 μM EHT

+ vehicle, 8 1 μM EHT + Aβ slices).

https://doi.org/10.1371/journal.pone.0189413.g003
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Fig 4. Chronic EHT treatment prevents Aβ-induced impairment of long-term potentiation. (A-B) Time

course of averaged Schaffer collateral fEPSP responses (± SEM) in hippocampal slices prepared from

animals fed control or EHT-containing diets and treated with either vehicle or 100 nM Aβ (horizontal bar) 20

min prior to delivery of theta-burst stimulation (arrow). (A) Aβ treatment significantly reduces potentiated

responses following TBS in slices prepared from animals on control diets (2-way RM-ANOVA for treatment

with time and treatment as factors: F(1,29) = 8.913, P = 0.0057). (B) Mice fed diets containing 0.01% EHT are

resistant to Aβ-induced LTP impairment (2-way RM-ANOVA for treatment with time and treatment as factors:

F(1,26) = 0.0943, P = 0.7612). C) Input/output (2-way RM-ANOVA for treatment with stimulus and treatment

as factors: F(1,57) = 0.5466, P = 0.4628) (N = 31 control, 28 0.01% EHT).

https://doi.org/10.1371/journal.pone.0189413.g004
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Effect of EHT treatment on PP2A expression and substrate

phosphorylation

To probe the molecular mechanisms underlying the effect of EHT treatment on Aβ sensitivity,

we compared the levels of PP2A and some of its associated proteins and post-translational

modifications in 3–4 month-old wild-type mice treated for 4 weeks with diets containing 0,

0.01, or 0.1% EHT. We found no significant differences between controls and animals main-

tained on EHT-containing diets for PP2A/C or PP2A/A subunit expression or in the level of

the B55α subunit expression whose incorporation into PP2A holoenzymes is thought to be

regulated by C-subunit methylation (Fig 5A and 5B). We also did not observe changes in the

expression of the PP2A methylesterase, PME-1, or the PP2A methyltransferase, LCMT-1, sug-

gesting that EHT’s effects on Aβ sensitivity were not due to alterations in the levels of these

PP2A subunits or the enzymes that regulate PP2A methylation.

At micromolar concentrations, EHT acts as an inhibitor of PME, and this is likely one

mechanism by which EHT increases PP2A activity when administered in vivo [3]. To examine

whether EHT-related changes in PP2A methylation might underlie its effects on Aβ sensitivity,

we used antibodies selective for the methylated (Fig 5A and 5B), and demethylated forms of

PP2A/C (Fig 5C and 5D) to compare the level of PP2A/C methylation in animals maintained

on control and EHT-containing diets. While prolonged dietary treatment with EHT from

weaning results in detectable changes in the level of PP2A/C subunit methylation in healthy

wild type mice and rats [2, 3], short-term treatment does not elicit similar changes [4], and we

observed no significant differences in PP2A/C subunit methylation between the EHT-treated

and control groups in our experiments (Fig 5B and 5D). This result is consistent with the nor-

mal behavioral performance we observe in EHT-treated animals that were not exposed to Aβ,

and with the observation that PP2A/C methylation levels are already nearly saturated under

basal conditions in mouse brain, reducing the likelihood of detecting any additional increase

in methylation resulting from EHT administration (e.g. the dimethyl-PP2A/C signal in

-NaOH treated control samples in Fig 5C is 21.9 ± 2.5% of the corresponding value in +NaOH

treated control samples). This result is also consistent with our previous work on transgenic

mice that over express LCMT-1, where we did not detect a significant increase in PP2A meth-

ylation under basal conditions despite significantly reduced Aβ sensitivity in these animals

[24].

To explore the possible mechanisms by which EHT affects Aβ sensitivity in these animals,

we compared the phosphorylation levels of three PP2A substrates that have been implicated in

AD: tau, GSK3β, and Creb. Tau has been suggested to act downstream of, or at least coopera-

tively with Aβ in pathways leading to AD-related behavioral and electrophysiological impair-

ments [31]. Since PP2A is the principal tau phosphatase in the brain, decreased tau

phosphorylation, through increased PP2A activity, is one mechanism by which EHT adminis-

tration might alter sensitivity to Aβ-induced impairments. To explore this possibility, we

examined tau phosphorylation at two phospho-epitopes using the PHF-1 antibody that recog-

nizes tau phosphorylated on serines 396 or 404 [32], and the CP13 antibody that recognizes

tau phosphorylated on serine 202 [33]. We found that EHT at the highest concentration tested

significantly reduced PHF1 immunoreactivity under basal conditions, with a trend toward

reduction at the CP13 epitope that was not statistically significant (Fig 5E and 5F).

GSK3β is another PP2A substrate that has been implicated in AD [34]. Dephosphorylation

of GSK3β at serine 9 resulting from increased PP2A activity could lead to an increase in tau

phosphorylation mediated by the active form of this kinase. However, recent data suggest

dephosphorylation of GSK3β is not mediated by methylation-sensitive PP2A isoforms [35]. To

determine whether EHT administration leads to changes in GSK3β phosphorylation that
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Fig 5. EHT treatment reduces tau phosphorylation. (A) Representative western blots for the indicated proteins and methylated PP2A/C performed on

hippocampal homogenates prepared from animals fed control diet, or diets containing 0.01 or 0.1% EHT. (B) Histogram showing average ± SEM for tubulin-

normalized band intensities expressed as average percent of control band intensity from replicate western blots in A show no significant differences in

expression levels for any of the indicated proteins or for methylated PP2A/C (ANOVA for: PP2A/C: F(2,22) = 0.2533, P = 0.7784; PP2A/A: F(2,22) = 0.2588,

P = 0.7743; B55α: F(2,22) = 0.06221, P = 0.9399; PME-1: F(2,22) = 0.4942, P = 0.6167; LCMT-1: F(2,22) = 0.2498, P = 0.7812; methyl-PP2A/C: F(2,22) =

0.1666, P = 0.8476). (C) Representative western blots for demethylated PP2A, and total PP2A/C performed on the homogenates described in A either

treated (+) or mock treated (-) with 0.5 M sodium hydroxide. (D) Histogram of average demethylated PP2A/C (± SEM) in hippocampal homogenates

prepared from animals fed control, or 0.01 or 0.1% EHT containing-diets show no significant differences in demethylated PP2A/C levels (ANOVA: F(2,22) =

0.1436, P = 0.8670). Values were calculated as ratios of demethyl-PP2A/C to total PP2A/C band intensities for -NaOH treated samples from replicate

western blots shown in C and expressed as percent of the average of control. (E) Representative western blots performed on hippocampal homogenates

prepared from animals fed control diet, or diets containing 0.01 or 0.1% EHT for phospho-Ser396/404 (PHF1), phospho-Ser202 (CP13) together with their

corresponding total tau loading controls, as well as and total tau together with its corresponding β-actin loading control. (F) Histogram showing average band
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might impact Aβ induced impairments or tau phosphorylation, we compared the level of

GSK3β phosphorylation at serine 9 by western blot using a phospho-specific antibody. We

found that EHT treatment resulted in no significant change in GSK3β phosphorylation (Fig

5G and 5I), however the trend revealed in these data suggest that EHT-dependent changes in

GSK3β activity could potentially compete with its effects on PP2A-mediated tau

dephosphorylation.

The cAMP responsive transcription factor, Creb, is key mediator of pathways required for

memory that has also been implicated in AD [36]. Creb is activated through phosphorylation

on serine 133, and can be dephosphorylated at this site by both PP2A and PP1 [37]. Creb

dephosphorylation has been associated with a decrease in synaptic efficacy which could poten-

tially contribute to AD related cognitive impairments [23, 38]. To determine if EHT adminis-

tration impacts Creb phosphorylation, we compared the level of phospho-serine 133

imunoreactivity in animals receiving 0, 0.01, or 0.1% EHT and found no significant differences

among these groups (Fig 5G and 5H), suggesting that EHT administration does not affect

Creb-mediated synaptic plasticity under basal conditions.

Discussion

Here we report that administration of EHT prevents cognitive and electrophysiological

impairments caused by acute application of oligomeric Aβ in mice. Given the central role that

oligomeric Aβ is thought to play in AD pathogenesis, these results suggest that EHT adminis-

tration may represent an effective therapeutic strategy for preventing AD-related impairments

that result from elevated levels of Aβ. These data are consistent with our published results

showing that promoting PP2A methylation by transgenic overexpression of the PP2A methyl-

transferase, LCMT-1, also protected mice from Aβ-induced cognitive and electrophysiological

impairments [24]. Our current data also show that EHT administration did not affect baseline

performance in any of the behavioral tasks tested, or TBS-induced LTP suggesting that, like

LCMT-1 overexpression, EHT may selectively block the pathological effects of Aβ without

impairing its normal physiological function. The protective effects of EHT shown here are also

consistent with our published results showing that dietary EHT administration prevented AD-

related pathology in rats that express a PP2A-inhibiting transgene [2]. However, since multiple

beta-amyloid species have been identified in AD brains [39, 40], we cannot rule out the exis-

tence of Aβ species not present in our synthetic preparations that lead to impairments in indi-

viduals with AD via mechanisms that are insensitive to EHT administration.

Here, we tested the effects of EHT on Aβ sensitivity at EHT doses that were found previ-

ously to protect against impairments resulting from PP2A inhibition in rats, and transgenic α-

synuclein expression and MPTP injection in mice [2–4]. In one of those studies, we found evi-

dence for a dose-dependent relationship between EHT and Parkinson’s disease-related impair-

ments in mice that express an α-synuclein transgene [3]. However, in the current experiments,

we found that diets containing 0.01% and 0.1% EHT were equally effective in protecting

against Aβ-induced impairments in our assays. Moreover, we found that chronic dietary and

intensities ± SEM for phospho-Ser396/404-tau (PHF1), phospho-Ser202-tau (CP13) normalized to corresponding total tau loading control, and total tau

normalized to corresponding β-actin loading control for replicate western blots shown in H show a trend for reduced phosphorylation at these sites in EHT-

treated animals (ANOVA for: PHF1: F(2,22) = 5.147, P = 0.147, Bonferroni post-hoc for PHF1 0.1% EHT vs. Control: t = 3.154, P = 0.0092; CP13: F(2,22) =

1.433, P = 0.2599; total tau: F(2,22) = 0.1268, P = 0.8815). (G and H) Representative western blots for phospho-Ser9 and total GSK3B and phospho-Ser133

and total Creb performed on hippocampal homogenates prepared from animals fed control diet, or diets containing 0.01 or 0.1% EHT. (I) Histogram showing

average ± SEM of phospho-GSK3β and phospho-Creb band intensities normalized to corresponding total GSK3β and Creb respectively for replicate

western blots shown in G&H show no significant effect of EHT treatment on phosphorylation at these sites (ANOVA for: P-GSK3β F(2,22) = 1.761,

P = 0.1952; P-Creb: F(2,22) = 0.1776, P = 0.8385). (N = 8 control, 8 0.01% EHT and 9 0.1% EHT treated animals for each measure).

https://doi.org/10.1371/journal.pone.0189413.g005
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acute in vitro administration of EHT were both effective in protecting against Aβ-induced LTP

impairments, and only at 0.1 nM did we observe a loss of efficacy for acutely administered

EHT in our LTP experiments. The concentrations of Aβ used in these experiments were near

the threshold for maximal behavioral and electrophysiological impairments, and this could

account for a quantitative difference in the amount of EHT necessary to protect against Aβ-

induced impairments in these assays compared with earlier results obtained using different

experimental paradigms. Alternatively, these data could suggest a qualitative difference in the

sensitivity of the pathways that mediate the pathological actions of α-synuclein and Aβ to

EHT, with Aβ-induced impairments potentially being more sensitive to EHT administration.

EHT was initially identified as a compound that activates PP2A by inhibiting the PP2A

methylesterase, PME-1 [3], and the effects of EHT treatment in these and previous experi-

ments are consistent with a PP2A-dependent mechanism of action. However, as in our previ-

ous study of LCMT-1 over expressing transgenic mice [24], we were unable to detect

significant changes in PP2A methylation in these EHT-treated animals despite profound

decreases in Aβ sensitivity. This may be due to the high percentage of methylated PP2A/C sub-

units that exist under basal conditions, as well as the duration of treatment (since treatment

with EHT from weaning in previous studies elicited detectable changes PP2A/C methylation

[2, 3]). However, we cannot rule out that EHT may be affecting Aβ sensitivity in these experi-

ments via a mechanism other than PME-1 inhibition.

PP2A is thought to be the principal phosphatase for phosphorylated forms of tau that are

linked to AD [41], and tau has been found to affect AD-related impairments that result from

elevated levels of Aβ. A mechanism by which PP2A mediated increases in tau dephosphoryla-

tion underlie the effects of EHT on Aβ-induced impairments is therefore an appealing expla-

nation for the results obtained in the current experiments. Our observation that EHT

treatment reduces basal levels of tau phosphorylation in animals that were not exposed to Aβ
is consistent with this mechanism of action (Fig 5E and 5F). In fact, since Aβ exposure is

thought to lead to increased tau phosphorylation [42–46], the effects of EHT may be more pro-

nounced in animals exposed to elevated Aβ levels. While our current data are not inconsistent

with a role for tau dephosphorylation in EHT-dependent decreases in Aβ sensitivity, the num-

ber of PP2A isoforms and substrates and the complexity of PP2A regulation leave open the

possibility that other PP2A substrates may play a role in mediating EHT’s neuroprotective

effects. Nevertheless, the results of the current experiments add strong support to the accumu-

lating evidence suggesting that agents such as EHT that modulate PP2A activity may provide

useful therapeutics for multiple neurological disorders including AD [2, 24] and other tauopa-

thies [17, 18], as well as impairments resulting from traumatic brain injury [47–52], and Par-

kinson’s disease [3, 4].

Materials and methods

Animals

Equal numbers of 3–4 month-old male and female wild type F1 mice generated from crosses

of C57BL6/J and 129SVEV/Tac animals were used for all experiments. Animals were housed

individually following surgeries to implant cannulae. Surgical procedures were performed

under anesthesia and all efforts were made to minimize suffering. Behavioral testing was con-

ducted during the light phase of a 12 light/dark cycle. Animals were tested in cohorts of 10–12

animals consisting of equal numbers of each of the 6 Aβ/EHT treatment groups. Behavioral

testing consisted a battery of tasks carried out over a period of 2 weeks in the following order:

open field behavior, 2-day radial arm water maze, contextual fear conditioning, visible plat-

form water maze and sensory threshold assessment. All procedures involving animals were
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conducted in strict accordance with protocols approved by the Columbia University Institu-

tional Animal Care and Use Committee (USDA Registration #21-R-0082; AAALAC Accredi-

tation #000687; NYDOH #A141).

Pharmacological agents

EHT was prepared and synthesized at Signum Biosciences as described in [53]. For acute treat-

ments, EHT was dissolved in dimethyl sulfoxide at a concentration of 1 mM and stored in ali-

quots at -20˚C until use. Final dilutions were prepared in DMSO such that a volume of 40 μl of

EHT diluted in DMSO was added to 40 ml of artificial cerebral spinal fluid (ACSF) to achieve

the final concentrations described above. Vehicle treatments were performed by adding of

DMSO only. EHT containing and control diets were prepared by Research Diets (New Bruns-

wick, NJ) as described in [3]. Diets containing either 0, 0.01 or 0.1% EHT were provided ad
libidum as described in the text. Synthetic Aβ peptide corresponding to amino acids 1–42 of

human amyloid precursor protein was purchased from the UCLA Biopolymer Laboratory

(Los Angeles, CA) and oligomerized according to previously described protocols [25, 54] (S1

Fig).

Cannulation and Aβ infusion

For experiments involving in vivo infusion of Aβ, animals were implanted with a 26-gauge

guide cannula (Plastics One, Roanoke, VA) into the dorsal part of the hippocampi (coordi-

nates: P = 2.46 mm, L = 1.50 mm to a depth of 1.30 mm) [55] under anaesthesia with 20 mg/kg

Avertin. Cannulas were fixed to the skull with acrylic dental cement (Paladur) and animals

were allowed to recover for 6–8 days following surgery prior to behavioural testing. 1 μl of Aβ
was infused into each hippocampus at a concentration of 200 nM over a period of 1 minute

through cannulas connected to a microsyringe by a polyethylene tubing at the timepoints indi-

cated in the text. After infusion, the needle was kept in place for an additional minute to allow

diffusion of Aβ into the tissue.

Open field behavior

Animals were placed into a plexiglass chamber (27.3 cm long × 27.3 cm wide × 20.3 cm high)

for 10 min on each of two successive days during which time their movements were tracked

using a arrays of infrared beams and a computerized tracking system and analyzed using

behavioral analysis software (Med Associates).

Radial arm water maze

Testing was performed in a 120 cm diameter pool containing a six arm radial maze insert and

filled with opaque water as described previously [29]. Mice were tested in 15 x 1 minute trials

on each of 2 consecutive days. The location of the escape platform was held constant during

testing but the start location was pseudorandomly varied throughout. On the first day, training

alternated between visible and hidden platform trials, while on the second day only hidden

platform trials were conducted. Water temperature was maintained at approximately 24˚C

and mice were dried and placed in a clean heated cage between trials to prevent hypothermia.

Entries into maze arms that did not contain the escape platform were scored as errors. Data

are presented as the average number of errors committed during blocks of 3 training trials.
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Contextual fear conditioning

Animals were placed into a conditioning chamber (33cm x 20cm x 22cm) made of transparent

Plexiglas on two sides and metal on the other two located inside a sound-attenuating

box (72cm x 51cm x 48cm) (MED Associates, St Albans, VT). Background white noise (72dB),

was provided through a speaker installed in one of the side of the sound-conditioning chamber

and illumination was provided by a 24 W bulb. A clear Plexiglas window allowed the experi-

menter to record and monitor freezing behavior using a video camera connected to a personal

computer. Foot shocks were administered through a removable 36-bar grid floor and the

entire apparatus was cleaned and deodorized between animals with distilled water and 70%

ethanol. Animals were placed in the conditioning chamber once on each of two consecutive

days. On the first day of exposure mice were placed in the conditioning chamber for 2 minutes

before the onset of a discrete 30s, 2800Hz, 85dB tone, the last 2s of which coincided with a 0.5

mA foot shock. After the tone and shock exposure, the mice were left in the conditioning

chamber for another 30s before returning to their home cages. 24 hours after their first expo-

sure, animals were returned to the conditioning chamber for 5 min without foot shock or tone

presentation. Freezing behavior during all phases of testing was calculated using FreezeFrame

software (Med Associates).

Visible platform water maze

This task was conducted in the same 120 cm diameter pool used for the radial arm water maze

task but with the partitions removed. Training for this task was carried out over 2 days with 3

morning and 3 afternoon trials on each day. Intertrial intervals were 15 to 20 min and rest

periods between morning and afternoon sessions were 2–3 hrs. Each trial was a maximum of

120 sec during which time the animals were required to swim to a visible escape platform

located just above the water surface. Animals that did not reach the platform within the allot-

ted time were guided to it and allowed to sit there for 15 sec before returning to their home

cage. The location of the platform was varied among 4 different locations such that it was not

present in the same location on any two successive trials. Water temperature was maintained

at approximately 24˚C, and animals were dried and placed in a clean warmed cage after each

trial to prevent hypothermia. Animal movements were recorded using a video-tracking system

and time required to reach the hidden platform (latency) and swim speed were determined

using Ethovision behavioral analysis software (Noldus).

Sensory threshold assessment

Animals were placed into the same apparatus used for contextual fear conditioning. A

sequence of single, 1sec foot shocks were then administered at 30 sec intervals and 0.1 mA

increments from 0 up to a maximum of 0.7 mA. Each animal’s behavior was monitored by the

experimenter to determine their thresholds for first visible response to the shock (flinch), their

first gross motor response (run/jump), and their first vocalized response.

Electrophysiological studies

Extracellular field potential recordings were performed on acute hippocampal slices prepared

as described previously [54] from wild-type animals that received control and EHT containing

diets. Animals were euthanized by cervical dislocation—a method of euthanasia approved by

the Panel on Euthanasia of the American Veterinary Medical Association that yields viable

anesthetic-free tissue suitable for electrophysiological recordings. Brains were then rapidly

removed and cooled in ice cold ASCF consisting of in mM: 124 NaCl, 4.4 KCl, 1 Na2HPO4, 25
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NaHCO3, 2 CaCl2, 2 MgCl2, and 10 glucose. Hippocampi were the dissected and sliced into

400 μM sections using a tissue chopper. Slices were incubated at 29˚C in an interface chamber

under continuous perfusion (2 ml/min) with oxygenated ACSF and allowed to recover for a

minimum of 90 min prior to recording responses in the CA1 region to stimulation of Schaffer

collateral projections with a bipolar electrode. Input/output relationships were determined

prior to each recording and stimulus intensities that elicited 30% of the maximal response

were utilized. Stable baselines were obtained for a minimum of 15 min prior to drug or vehicle

application and a theta-burst stimulation protocol consisting of 3 trains separated by 15 second

intervals with each train consisting of 10 bursts at 5 Hz and each burst consisting of 5 pulses at

100 Hz was used to elicit LTP.

Western blotting

After 4 weeks of dietary EHT administration animals were euthanized by cervical dislocation–

an AVMA approved method that allows for rapid removal of non-hypoxic brains. Hippocampi

were then rapidly dissected, snap frozen and stored prior to homogenization for western blot

analysis. Hippocampal homogenates were prepared by sonication at 95˚C in aqueous buffer

containing 2% lithium dodecyl sulfate and 50 mM Tris pH 7.5. Total protein concentrations

were determined by bicinchoninic acid assay according to the manufacturer’s instructions

(Pierce) and 15 μg of total protein was loaded per lane on SDS-PAGE gels. Proteins were trans-

ferred to PVDF membranes, which were then blocked with Odyssey Blocking Buff (TBS)

(LI-COR) for 1 hr at rm temp. Blots were probed with primary antibodies (Table 1) overnight

followed by the corresponding secondary, which was one of the follow: Goat anti-rabbit

(IRDye 800CW LI-COR), Goat anti-mouse (IRDye 680RD LI-COR), or Donkey anti-goat

(IRDye 680RD LI-COR). Protein bands were detected by an Odyssey Clx and quantified by

ImageStudio. Band intensities were determined for each antigen and normalized to the corre-

sponding within-lane loading control. Data were presented as the mean normalized band

intensity for each treatment group ±SEM and expressed as the percent of the mean value for

the vehicle-treated control group.

Table 1. List of antibodies.

Protein Cataolg/Company Dilution

LCMT-1 ab119320/Abcam 1:1,000

PME-1 07–095 EMD/Millipore 1:2000

Tubulin MAB3408/Millipore 1:5,000

N-terminus PP2Ac (Total PP2Ac) Sc-130237/Santa Cruz 1:200

Methylated PP2Ac 4D9/

Princeton University [57]

1:500

Demethylated PP2Ac 1D6/Millipore 1:1000

PP2A subunit A 07-250/Millipore 1:1000

GSK-3β Ab2602/Abcam 1:1000

GSK-3β-P (Ser9) 9336/Cell Signaling 1:1000

CREB Sc-186/Santa Cruz 1:100

CREB-P (Ser133) Sc-7978/Santa Cruz 1:200

PP2A subunit B55-α Sc-81606/Santa Cruz 1:200

phospho-tau S396/404 PHF-1Peter Davies 1:500

phospho-tau S202 CP13/Peter Davies 1:500

Total tau PA5-27287/Pierce 1:5,000

β-actin MA5-15739/Pierce 1:5,000

Aβ 803004 (6E10)/Biolegend 1:1000

https://doi.org/10.1371/journal.pone.0189413.t001
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Alkaline demethylation

To demethylate PP2Ac, the following method was modified from Yu et al. [56]. Homogenates

were incubated with 0.5 M NaOH for 10 min at 4˚C. The reaction was stopped by first adding

HCl at a final concentration of 0.460 mM and then Tris-HCl at a final concentration of 0.1 M.

Supporting information

S1 Fig. Oligomeric Aβ preparation. Representative western blot of synthetic Aβ preparation

used in behavioral and electrophysiological assays. Synthetic peptide corresponding to human

Aβ 1–42 sequence was incubated for 24 hrs at 4˚C in artificial cerebral spinal fluid. The incu-

bated preparation was then separated by SDS-PAGE on a 10% NuPAGE bis-Tris gel, and

probed with the monoclonal antibody 6E10 which recognizes an epitope contained within res-

idues 1–17. The pattern of immunoreactivity observed is consistent with that originally

reported in Stine et al, [25] and in subsequent publications [58, 59]. It should be noted, how-

ever, that while these data show that the oligomeric Aβ preparations used in this study were

similar in this assay to preparations used in earlier studies, they do not necessarily provide an

accurate representation of the oligomeric state of these preparations in aqueous solution [60].

(TIFF)
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